Учебник по дискретной математике

Оглавление
n1.doc (26 стр.)
Скачать
1   2   3   4   5   6   7   8   9   ...   26

Теорема. =


Обозначим x =. Тогда оставшиеся (nm) элементов можно упорядочить (nm)! способами. По принципу произведения, если объект A можно выбрать x способами, объект B (nm)! способами, то совместный выбор “A и B” можно осуществить x (nm)! способами, а выбор “A и B” есть перестановки и Pn = n! Отсюда x = =

Рассуждая иначе: первый элемент выбираем n способами, второй – (n – 1) способами и т.д. , m–й элемент выбираем (nm + 1) способом. По принципу произведения вновь имеем: n(n – 1)...(nm +1), что совпадает с .

Пример 4. Группа из 15 человек выиграла 3 различных книги. Сколькими способами можно распределить эти книги среди группы?

Имеем = 15 14 13 = 2730.

Сочетания. Неупорядоченные выборки объемом m из n элементов (mn) называются сочетаниями. Их число обозначается .

Теорема.


Доказательство. Очевидно, Действительно, объект A – неупорядоченная выборка из n элементов по m, их число . После того, как эти m элементов отобраны, их можно упорядочить m! способами (в роли объекта B выступает “порядок“ в выборке). Совместный выбор “A и B“ – упорядоченная выборка.

Пример 5. Группа из 15 человек выиграла 3 одинаковых книги. Сколькими способами можно распределить эти книги?



Сочетания, размещения и перестановки являлись подмножествами исходного множества. Рассмотрим выборки, которые не являются подмножествами.

Размещения с повторениями. Упорядоченные выборки объемом m из n элементов, где элементы могут повторяться, называются размещениями с повторениями. Их число обозначается (n).

Теорема. (n) = nm.

Доказательство. Первый элемент может быть выбран n способами, второй элемент также может быть выбран n способами и так далее, m -й элемент также может быть выбран n способами. По принципу произведения получаем nm .

Пример 6. Кодовый замок состоит из четырех разрядов, в каждом разряде независимо от других могут быть выбраны цифры от 0 до 9. Сколько возможных комбинаций?

Здесь n = 10, m = 4 и ответом будет 104.

Пример 7. Рассмотрим вектор длины m, каждая координата которого может принимать всего 2 значения: 0 или 1. Сколько будет таких векторов?

Это есть выборка, объемом m из двух элементов. Ответ: 2m

Перестановки с повторениями. Пусть имеется n элементов, среди которых k1 элементов первого типа, k2 элементов второго типа и т.д., ks элементов s-го типа, причем k1 + k2 + ... + ks = n. Упорядоченные выборки из таких n элементов по n называются перестановками с повторениями, их число обозначается Cn(k1, k2, ..., ks). Числа Cn(k1, k2, ..., ks) называются полиномиальными коэффициентами.
Портфель ученика
© lib.rushkolnik.ru
При копировании укажите ссылку.
обратиться к администрации